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Current public-opinion propagation research usually focused on closed network topologies without considering the
fluctuation of the number of network users or the impact of social factors on propagation. Thus, it remains difficult to
accurately describe the public-opinion propagation rules of social networks. In order to study the rules of public opinion
spread on dynamic social networks, by analyzing the activity of social-network users and the regulatory role of relevant
departments in the spread of public opinion, concepts of additional user and offline rates are introduced, and the direct
immune-susceptible, contacted, infected, and refractory (DI-SCIR) public-opinion propagation model based on real-time
online users is established. The interventional force of relevant departments, credibility of real information, and time of
intervention are considered, and a public-opinion propagation control strategy based on direct immunity is proposed. The
equilibrium point and the basic reproduction number of the model are theoretically analyzed to obtain boundary conditions
for public-opinion propagation. Simulation results show that the new model can accurately reflect the propagation rules of
public opinion. When the basic reproduction number is less than 1, public opinion will eventually disappear in the network.
Social factors can significantly influence the time and scope of public opinion spread on social networks. By controlling
social factors, relevant departments can analyze the rules of public opinion spread on social networks to suppress the
propagate of negative public opinion and provide a powerful tool to ensure security and stability of society.
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1. Introduction

When analyzing online public opinion, it is useful to con-
sider the social network as the carrier and the social event as
the core. This model presents a collection of expressions, com-
munications, and interactions comprising the majority of neti-
zens’ emotions, attitudes, opinions, and subsequent influences.
Internet public opinion is highly subjective, and it is directly
conveyed via the internet in various forms without verifica-
tion or packaging by relevant government departments. At
present, the number of social-network users has spanned into
the hundreds of millions, and social networks have provided
the means of spreading public sentiment. This spread has
revealed characteristics of fast speed and wide range. Thus,
whenever negative public opinion erupts on the network, it
can pose a very serious challenge to well-being and security.
Therefore, studying the mechanism of public-opinion prop-
agation in social networks, constructing a more reasonable
public-opinion propagation model, and proposing an agile and
effective public-opinion control strategy are of great signifi-

cance for maintaining social stability.

In recent years, the theory of complex networks has re-
ceived widespread attention from scholars, who have used
complex theoretical networks to reveal the characteristics and
evolution of many real networks. Consequently, complex net-
work theory has provided the mechanism to elaborate on the
spread of public opinion. It has been found that the spread
of public opinion in social networks is very similar to the
spread of infectious disease. Thus, those propagation mod-
els have been very useful. Classic infectious disease propaga-
tion models include susceptible–infected (SI), SI–susceptible
(SIS), and SI–refractory (SIR) models.[1–3] Based on the SIR
model, Zhou et al. analyzed the influence of topology and
node-degree distribution on the spread of social-network ru-
mors and concluded that the number of communicators in the
network was related to the topology. The final number of com-
municators in the scale-free network was found to be larger
than that in the random network.[4] Ding et al. considered di-
rect immunity for the propagation of information in the Weibo
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network and proposed an improved SIR propagation model.[5]

Moreno et al. explored the process of rumor-spreading in
scale-free networks and found that those networks could sup-
press the spread.[6] Xia et al. introduced the attractiveness and
ambiguity of rumors into the susceptible–exposed–infected–
refractory (SEIR) model, and proposed a hesitation mech-
anism, finding that ambiguity had a greater impact on the
threshold of rumor propagation and its final scope.[7] Zhang
et al. proposed a network generation model with a community
structure as the goal, and studied the influence of uneven com-
munity strength and scale on the spread of rumors.[8] Yin et
al. proposed a multiple-information susceptible–discussing–
immune model to characterize social-network public-opinion
information propagation, simulating it on the Weibo network.
Thus, they more accurately predicted the propagation trends
of public sentiment.[9] Chen et al. considered user interac-
tions during public-opinion propagation and proposed a two-
level-mixing rumor propagation model based on a dynamic
trust network. Their simulation showed that the trust between
users could control the spread.[10] Li et al. considered the in-
fluence of positive and negative social reinforcement effects
on the second spread of public opinion and the role of rel-
evant government departments in the supervision of public
sentiment, proposing a direct-reinforcement susceptible, con-
tacted, infected, and refractory (DR-SCIR) model, which more
accurately described the propagation and immune process of
public opinion in social networks.[11] Yao et al. proposed the
susceptible–exposed–infected–incubation–refractory (SE2IR)
rumor propagation model with a hesitation mechanism and
found that a target immune strategy was more effective than
an random immune strategy for this model.[12]

For the research of propagation control, there are ran-
dom, target, and acquaintance control strategies based on the
different methods of selecting immune nodes. Based on the
SIS epidemic model, Pastor et al. studied the above con-
trol strategies in uniform and scale-free networks, finding that
random control strategies had better control effects in uni-
form networks. However, they performed poorly in scale-
free networks. Target control strategies had good control
effects in both.[13] Yang et al. proposed a temporal ran-
dom control strategy that could effectively reduce the exist-
ing time and range of rumor spread.[14] Cohen et al. studied
acquaintance-control strategies based on the traditional rumor
propagation models and proposed an effective control strat-
egy for scale-free networks, obtaining a critical threshold for
complete immunity.[15] Saran et al. improved acquaintance-
control strategies and leveraged respondent-driven sampling to
provide an economic and efficient strategy for intervention and
control of invisible people.[16] For the suppression of rumors
in online social networks, Gu et al. proposed an improved

important-acquaintance immunization strategy based on the
SEIR model. Simulation analysis showed that the model con-
formed to the spread characteristics of real social-network ru-
mors. Simultaneously, the important acquaintance immuniza-
tion strategy had a good suppression effect.[17] Mehta et al.
considered the effect of node importance on suppressing the
spread of public opinion and proposed a new measure of node
importance, finding that the spread of information could be ef-
fectively reduced by suppressing important nodes.[18] Guo et
al. established a public-opinion communication model based
on irrational game theory. Simulation analysis showed that
increasing social deterrence, controlling the spread of opinion
leaders, and providing positive news could suppress the spread
of rumors.[19]

At present, most research on public-opinion propagation
has focused on closed network topologies without consider-
ing fluctuations in the number of network users or the impact
of social factors on propagation. However, in real social net-
works, user states can be divided into online and offline, such
that the number of active users is not consistent. Meanwhile,
during the process of controlling network sentiment, relevant
departments, media services, and the public resolve to a be-
nign and interactive three-way relationship. In this scenario,
relevant departments increase their involvement to enhance
the transparency of information, and the media releases infor-
mation in a timely manner to meet demand. Ultimately, the
goal is to achieve control over the spread of malignant senti-
ment across social networks. Based on the SCIR model, this
paper considers the activity of network users, introduces the
concepts of additional-user and offline rates, which causes the
number of nodes in the network to fluctuate, and establishes a
direct immune (DI)-SCIR public-opinion propagation model
based on real-time online users. The direct-immunity control
strategy of social factors includes interventional force, real in-
formation credibility, and interventional time of relevant de-
partments. The activities cause the S-state node to directly
change to the R state without secondary propagation after be-
ing exposed to public opinion. From the theoretical analysis
of the balance point and basic reproduction amount of the DI-
SCIR model, the boundary conditions of public-opinion prop-
agation are obtained. Finally, the impact of different factors
on public-opinion propagation in social networks is analyzed
via simulation, and the direct-immunity rules of different fac-
tors are summarized to provide a reference for relevant depart-
ments when responding to rumors and maintaining network
and social security.

The rest of the paper is organized as follows. Sec-
tion 2 proposes the DI-SCIR public-opinion propagation
model based on real-time online users and establishes its con-
trol strategy. Section 3 theoretically analyzes the equilibrium
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point and basic reproduction number of the DI-SCIR model.
Section 4 simulates the feasibility and effectiveness of the
model, analyzes its influence on the spread of public opinion
by changing model parameters, and compares the control ef-
fects of different models. Section 5 provides the conclusion to
the paper.

2. DI-SCIR public-opinion propagation model
based on real-time online users

2.1. SCIR public-opinion propagation model

As a typical complex network, social networks support
interactions among friends and followers and spread public-
opinion information via comments, reposts, and other means.
The spread model of infectious diseases in complex networks
is the main theoretical tool used for studying the spread of
public opinion on social networks. The classic SIR infectious-
disease propagation model divides network nodes into three
states: susceptible S, infected I, and recovered state R.[20–22]

To study the propagation rule of public-opinion information,
researchers have introduced contact state C on the basis of the
SIR model, redefining the status of each state node to construct
the SCIR propagation model.[23]

SCIR divides network users into four states: unknown S,
hesitant C, propagating I, and immune R. Among them, the
unknown state S represents the state in which the user has not
been exposed to public-opinion information. However, it is
still possible to spread the information. Hesitant state C repre-
sents the state in which the user has obtained the information
from the neighboring node but has not yet decided whether to
spread the information. Propagation state I represents the state
in which the user has obtained public-opinion information and
can disseminate the information. Immunity state R represents
the state wherein the user has obtained the information but will
not propagate it. The state-transfer rules of the public-opinion
propagation process are defined as follows:

(i) After the unknown state S contacts the propagating
state I, it will change to the hesitant state C, with a probability
of PSC.

(ii) After the hesitant state C contacts the propagation
state I, it will either change to the propagation state I, with
a probability of PCI , or it will change to the immune state R,
with a probability of PCR.

(iii) Propagation state I transfers to the immune state R,
with a probability of PIR.

(iv) After the node reaches the immune state R, its state
will not change.

The SCIR public-opinion propagation model is shown in
Fig. 1.

S C I R
PSC PCI PIR

PCR

Fig. 1. SCIR public-opinion propagation mode.

In Fig. 1, PSC represents the probability of being exposed
to public opinion, but the node has not decided whether to
spread the public opinion. This is the internal contact probabil-
ity. PCI represents the probability of contacting and spreading
the public opinion. This is the probability of indirect forward-
ing. PCR indicates the probability that the state of hesitation
does not spread and becomes immune. This is the indirect im-
munization probability. PIR indicates the probability that the
propagator does not believe the public opinion for some rea-
son and becomes an immunizer. This is the forwarding immu-
nization probability. These probabilities meet the constraint of
0 6 PSC, PCI , PCR, PIR 6 1.

The differential equation of the SCIR public-opinion
propagation model is

dSk

dt
=−PSCSkIk,

dCk

dt
= PSCSkIk − (PCI +PCR)Ck,

dIk

dt
= PCICk,

dRk

dt
= PCRCk +PIRIk.

(1)

2.2. DI-SCIR public-opinion propagation model based on
real-time online users

Considering a user’s active factors in social networks,
some users may temporarily leave the network, causing the
problem of the number of online users changing in real time.
Thus, this article introduces the concept of additional rate and
offline rate, in which the additional rate is defined as the per-
centage of new online users in the total number of users at a
certain moment, and the offline rate is defined as the propor-
tion of the number of offline users at a certain moment in the
total number of users.

This article also considers the existence of direct immu-
nization. Relevant departments can take certain measures,
such as publishing real information, to supervise the spread
of public opinion and guide its direction, thereby controlling
the spread of public opinion in social networks. Specifically,
direct immunization is applied to unknown users, such that
when the relevant departments release real information, the
unknown users will directly change to the immune state with
probability PSR when they first contact the public opinion in-
formation, thereby controlling the spread of public opinion
and reducing the social impact of negative public opinion. The
DI mechanism can be expressed by the following formula:

S+ I
PSR−−→ R+ I. (2)

100204-3



Chin. Phys. B Vol. 29, No. 10 (2020) 100204

Based on the above considerations, the DI-SCIR public-
opinion propagation model based on real-time online users is
established, as shown in Fig. 2.

S C I R
PSC PCI

PSR

A

µ µ µ µ

PIR

PCR

Fig. 2. DI-SCIR public-opinion propagation model based on real-time on-
line users.

In Fig. 2, A represents the additional rate of users in un-
known states in the network. µ represents the offline rate of
various users. PSR represents the probability that the public
opinion will not be transmitted by unknown users after being
exposed to it. That is, the direct immunity probability. These
probabilities meet the constraints of 0 6 A, µ , PSC, PSR, PCI ,
PCR, PIR 6 1.

Because there is an additional rate, A, and an offline rate,
µ , in the network, the number of real-time online users on the
network is

|1+A−µ|N(t) = S(t)+C(t)+ I(t)+R(t). (3)

Therefore, the differential equation of the DI-SCIR
public-opinion propagation model based on real-time online
users is 

dSk

dt
= A− (PSC +PSR)SkIk −µSk,

dCk

dt
= PSCSkIk − (PCI +PCR +µ)Ck,

dIk

dt
= PCICk − (PIR +µ)Ik,

dRk

dt
= PCRCk +PIRIk +PSRSkIk −µRk.

(4)

The initial value of the model is

Sk(0) = 1−Ck(0)− Ik(0)−Rk(0)> 0, (5)

where, Ck(0), Ik(0),Rk(0)> 0.
Because the first three equations of Eq. (4) do not contain

state R, equation (4) can be simplified to

dSk

dt
= A− (PSC +PSR)SkIk −µSk,

dCk

dt
= PSCSkIk − (PCI +PCR +µ)Ck,

dIk

dt
= PCICk − (PIR +µ)Ik.

(6)

2.3. Control strategy of public-opinion propagation based
on direct immunity

The primary means of a public-opinion propagation con-
trol strategy involves the increase of the number of immune

nodes and the probability of direct immunity. At present,
the common immunization strategies of complex network
theory include random (i.e., uniform) immunization, target
(i.e., selective) immunization, and acquaintance (i.e., nearest-
neighbor) immunization. That is, some nodes are randomly
selected from the network as target nodes. Then, the target
node and its connecting edges are removed, which is equiva-
lent to setting the target node as a permanent immune node.
The chance of each node being immunized is equal, not differ-
ent, to the risk of node infection.[24] It is an immune strategy
designed for the non-uniform characteristics of scale-free net-
works. It mainly immunizes the largest nodes in the network.
After the large nodes are immunized, the connected edges can
be removed, which greatly reduces the possible paths of prop-
agation. This method has a good immune effect, but it must
know the global information of the network in advance. This is
difficult to achieve in a huge social network.[25] Among all the
nodes in the network, a certain proportion is completely and
randomly selected as intermediate nodes. For each intermedi-
ate node, one neighbor node is randomly selected as the target
node, and it is set as a permanent immune node, avoiding the
need to know the global information for target immunity.[26]

Unfortunately, most of the current research on public-
opinion propagation control strategies is based on the network
topology, and little consideration has been given to the influ-
ence of social factors on the immune function. This article
summarizes the social factors that affect direct immunity into
the following categories.

2.3.1. Interventional force of relevant departments

The main purpose of the immunization strategy is to re-
duce the number of users who spread malignant public opin-
ion on the network. When the relevant government depart-
ments take restrictive measures on the spread of public opin-
ion, the greater the intervention and the greater the importance
attached to public opinion. Then, the relevant departments will
take a more powerful approach to reduce the impact of nega-
tive public opinion and promote more network users believing
real information, ultimately creating more immune users at the
initial stage of direct immunity. Simultaneously, because opin-
ion leaders in social networks will have an important influence
on the spread of sentiment,[27,28] increasing the involvement of
relevant departments should limit the spreading ability of in-
fluential communicators in the network, thus suppressing the
spread.

2.3.2. Credibility of real information

Social media not only passively provides information
channels, it also changes modes of thinking. Official authori-
tative information held by the government and other relevant
departments must be released to the public through the me-
dia. As an important means of countering malignant public
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opinion, mainstream media should grasp the initiative of in-
formation release as soon as possible, building a bridge be-
tween the masses and the government, striving to improve the
credibility of the government and to increase the credibility
of the real information, ultimately leading to malignant pub-
lic opinion completely losing the market. Notably, earthquake
warnings via the seismic network have higher credibility than
many other agencies or media. Therefore, the credibility of the
real information source will greatly affect immunity control.

2.3.3. Interventional time of relevant departments

Most mass incidents caused by negative public sentiment
are related to failures of relevant departments to deal with them
in a timely and effective manner. When public opinion begins
to spread on the internet, relevant departments should quickly
verify the authenticity of public opinion and estimate its pos-
sible impact. After the initial stages of outbreak are missed,
negative public opinion will be fomented, increasing the dif-
ficulty of public opinion to control it. Therefore, the relevant
departments must collect rumors and information in a timely
and accurate manner and intervene quickly.

From the perspective of propagation dynamics, the infor-
mation will inevitably be perturbated by noise during the prop-
agation process, perhaps weakening the effect of the relevant
departments’ direct immunity. This degree of noise is related
to the social factors embedded into the information itself. The
lower the credibility of the real information, the greater the
interference of noise. The wider the range of real informa-
tion propagation, the stronger the interference. To reduce the
spread of malignant public opinion and to reduce its harmful-
ness, we must try to increase the spread of real information
released by the relevant departments and reduce the interfer-
ence of noise for the direct immunization strategy.

To control the spread of public opinion, this paper uses
social factors to intervene in the model, considering the influ-
ence of noise interference. The direct-immunity probability,
PSR, is defined as

PSR =

{
0, 0 6 t < T,

αβ (1− e−
β

α ), t > T,
(7)

where α represents the intervention strength, reflecting the
density of nodes in the immune state at the initial moment of
adopting the immunization strategy. β represents the credi-
bility of the real information, β ∈ [0,1]. T represents the in-
terventional time of relevant departments. e−β/α represents
the noise interference, which is proportional to the interven-
tional force, α , and inversely proportional to the credibility of
the real information, β . The direct-immunity probability PSR

changes with the intervention force α , and the real information
credibility β , as shown in Fig. 3.
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Fig. 3. Direct immunity probability PSR changes with the interventional
force α , and the real information credibility β . When α = 0.2859 and β = 1,
PSR takes a maximum value of 0.7620.

3. Stability analysis
In the study of prevention and control measures for in-

fectious diseases, people tend to be most concerned about
the conditions under which the disease originates and dies
out. The desire is to take corresponding measures to rapidly
achieve or approach extinction and to reduce the number of
infections. The basic reproduction number is one of the most
important indicators used to measure the outbreak and extinc-
tion of infectious diseases in the propagation dynamics model.
It is usually expressed by R0. This is defined as the number
of patients who can be infected during the average period of
illness, which manifests via two situations:

(1) R0 6 1 means that the maximum number of patients
that can be transmitted in an average infection period is less
than one. Thus, the disease will gradually disappear. At this
time, the model only has a disease-free equilibrium, which is
globally asymptotically stable.

(2) R0 > 1 means that a patient can infect more than one
new patient in the average period of infection. Thus, the dis-
ease will always exist and will form an endemic. At this time,
in addition to the disease-free equilibrium point, there is an
endemic-disease equilibrium point. The disease-free equilib-
rium point of the model is unstable, and the endemic disease
equilibrium point is globally asymptotically stable.

The next-generation matrix proposed by Van Den
Driessche[29] is an effective method for calculating the basic
reproduction number. The main steps are as follows:

(1) Select the infectious-state node, record the new in-
fected item as a vector function, ℱ(x), and the removal item
as a vector function, 𝒱(x).

(2) Substitute the disease-free equilibrium point, obtain
the Jacobian matrix, and obtain the appearance-rate matrix of
the new communicator, 𝐹 , and the individual migration rate
matrix, 𝑉 .

(3) Calculate 𝐹𝑉 −1; its spectral radius is the basic repro-
duction number, R0.

According to the characteristic that newly added nodes in
a complex network are more easily connected to nodes having
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a higher degree, the influence of node degree should be con-
sidered during the process of analyzing public-opinion propa-
gation.

Assuming that ρk(t) represents the density of diseased
nodes in the node group having scale k at time t, the following
differential equation is satisfied:[30,31]

dρk(t)
dt

= λ (k)(1−ρk(t))Θk(t)−ρk(t), (k = 1,2, . . .). (8)

Considering that λ (k) = λ̃ (k)k, λ̃ (k) represents the prop-
agation rate related to degree, and Θk(t) represents the proba-
bility that an edge from a node of degree k will connect to the
propagation node I.[32] Thus, there is

Θk(t) = ∑
k′

ϑ(k′)
k′

P(k′|k)ρk′(t), (9)

where 1/k′ represents the probability that a neighbor node of
a certain node in the propagation state, and degree k contacts
the node in unit time. ϑ(k′) represents the number of times the
node having degree k′ has effectively contacted other nodes
per unit time. P(k′|k) represents the conditional probability
that a node of degree k will randomly touch a node of degree
k′ through an edge.

For a degree-independent network, the degrees of differ-
ent nodes are uncorrelated. That is, P(k′|k) is independent of
k but proportional to k′P(k′).[33] Thus,

P(k′|k) = k′P(k′)
⟨k⟩

, (10)

where ⟨k⟩ is the average degree of the network. For the general
function f (x), there is

⟨ f (x)⟩ := ∑
k

f (k)P(k), (11)

where P(k) is the degree distribution or the probability of any
node whose degree is k. Because this article is studied on
degree-independent networks, equation (9) can be simplified
to

Θ(t) =
1
⟨k⟩

n

∑
k′

ϑ(k′)P(k′)Ik′(t), (12)

where Θ(t) represents the probability that any edge in the net-
work points to a node in the propagation state. Therefore, the
probability of changing from an unknown state to a hesitant
state can be defined as

PSC = λ ⟨k⟩Sk(t)Θ(t). (13)

Assuming the left side to be zero in Eq. (4), and when
Ik = 0, k = 1,2, . . . ,n, the model is in the disease-free equilib-
rium state, and there is a disease-free equilibrium point at this
time

E0 = (S0,C0, I0) = (A/µ,0,0). (14)

When I > 0, the endemic disease equilibrium point of the
model is E* = (S*,C*, I*), where

S* =
(PCI +PCR +µ)(PIR +µ)

PSCPCI
,

C* =
APSCPSI − (PSR +µ)(PCI +PCR +µ)(PIR +µ)

PSCPCI(PCI +PCR +µ)
,

I* =
APSCPSI − (PSR +µ)(PCI +PCR +µ)(PIR +µ)

PSC(PCI +PCR +µ)(PIR +µ)
. (15)

Owing to Sk(t)+Ck(t)+ Ik(t)+Rk(t) = 1, equation (4)
can be simplified to

dCk

dt
= PSC(1−Ck − Ik −Rk)Ik − (PCI +PCR +µ)Ck,

dIk

dt
= PCICk − (PIR +µ)Ik,

dRk

dt
= PSR(1−Ck − Ik −Rk)Ik +PCRCk +PIRIk −µRk.

(16)
Divide vector 𝑥 and vector 𝑦 into

�̇�=

[
C(t)
I(t)

]
, �̇� =

[
S(t)
R(t)

]
. (17)

Suppose that
�̇�= ℱ(𝑥)−𝒱(𝑥). (18)

The rate of new infected is

ℱ(𝑥) = (ℱ1(𝑥), . . . ,ℱn(𝑥),0, . . . ,0,0, . . . ,0)T. (19)

The individual migration rate is

𝒱(𝑥) =
(
𝒱1(𝑥), . . . ,𝒱n(𝑥),𝒱n+1(𝑥), . . . ,𝒱2n(𝑥),

𝒱2n+1(𝑥), . . . ,𝒱3n(𝑥)
)T
. (20)

Then, there are

�̇�= ℱ(𝑥)−𝒱(𝑥) =
[

PSCSkIk
0

]
−
[

(PCR +PCI +µ)Ck
−PCICk +(PIR +µ)Ik

]
.

(21)
Calculating the Jacobian matrix for ℱ(𝑥) and 𝒱(𝑥), there are

𝐹 = Jacobian(ℱ(𝑥)) =

[
0 PSCSk
0 0

]
, (22)

𝑉 = Jacobian(𝒱(x)) =
[

PCI +PCR +µ 0
−PCI PIR +µ

]
. (23)

The basic reproduction number from Ref. [34] is

R0 = ρ̃(𝐹𝑉 −1), (24)

where ρ̃ represents the spectral radius of the matrix. Then, the
basic reproduction number of the model is

R0 =
PCIPSCSk

(PIR +µ)(PCI +PCR +µ)
. (25)

Bringing the disease-free balance point in Eq. (14), we
obtain

R0 =
PCIPSCA

µ(PIR +µ)(PCI +PCR +µ)
. (26)
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When R0 6 1, there are fewer users who obtain public-
opinion information in the network. Thus, the information
will disappear in the network eventually, and the model will
be locally progressively stable at the disease-free equilibrium
point E0. When R0 > 1, the number of infected nodes (i.e.,
users who contact and spread the public opinion information)
in the network will gradually increase until it reaches a stable
state. Then, this number fluctuates around the endemic disease
balance point E*.

4. Simulation analysis
4.1. Dataset

The characteristics of social networks are consistent with
Barabási–Albert (BA) scale-free networks, including the pos-
session of typical power-law distribution characteristics.[35,36]

Thus, the dataset in this paper adopts a BA scale-free network
having 1000 nodes. The schematic of the topology is shown
in Fig. 4, and the corresponding characteristic parameters are
shown in Table 1. To visually display the nature of BA scale-
free networks, the network’s degree distribution is shown in
Fig. 5.

Fig. 4. BA scale-free network topology. Nodes having higher degrees are
darker in color and larger in area, and the relationship between the nodes is
indicated by a solid gray line.

Table 1. Characteristic parameters of BA scale-free network.

Node Edge Average degree Max degree Min degree Average path length Average clustering coefficient
1000 7981 7.981 230 8 3.233 0.029

101 102

k

10-3

10-2

10-1

100

P
↼k
↽

Fig. 5. BA scale-free network degree distribution logarithmic coordinate
graph. The x-axis, k, represents the degree of nodes in the network, and the
y-axis, P(k), represents the distribution of correspondence degrees.

As can be seen from Fig. 5 and Table 1, the degree dis-
tribution of BA scale-free network nodes approximately fol-
lows the power-law distribution, which reflects the scale-free
characteristic, and the maximum and minimum degrees have a
large gap.[37] However, the average degree and clustering co-
efficient are small. All of these reflect the characteristics of a
small world, which reflect characteristics similar to real social
networks. Thus, a BA scale-free network is selected for the
simulation data.

4.2. The influence of basic reproduction number on the
propagation of public opinion

To analyze the impact of the basic reproduction number
on the spread of public opinion, considering the fact that the
total number of nodes in the network has limited fluctuations
around N, that is, A = µ , the two cases, R0 > 1 and R0 6 1, are
simulated and analyzed. The results are shown in Fig. 6.
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Fig. 6. Effect of basic reproduction numbers on the spread of public opinion:
(a) random chosen R0 = 1.3914 > 1; (b) random chosen R0 = 0.9635 < 1.

It can be seen from Fig. 6(a) that, when R0 > 1, after
60-h propagation, the network reaches a stable state with
(S(t),C(t), I(t),R(t)) → (0.0203,0.0582,0.3162,0.6053).
The node density in the immune state R is about 0.6, and
the node density in the propagation state I is about 0.31, indi-
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cating that although there are a certain proportion of users in
the immune state R in the stable state, public-opinion propa-
gators always exist in the network and that public opinion will
continue to spread, similar to the spread of epidemics, show-
ing a spreading trend. It can be seen from Fig. 6(b) that, when
R0 6 1, there is a peak in the number of propagators. When
the peak is reached, the density of the I state node will show
a downward trend when the public opinion reaches a stable
state with (S(t),C(t), I(t),R(t)) → (0,0,0.0467,0.9533). At
this time, the node density of the I state is almost zero, and
most of the nodes are in the immune state, indicating that the

vast majority of internet users are not interested in the public
opinion, so the public opinion is difficult to continue to influ-
ence. This is similar to the spread of an endemic disease that
will eventually disappear from the network.

4.3. The influence of interventional force on the propaga-
tion of public opinion

To analyze the influence of interventional force α on the
spread of public opinion, assuming that other variables are the
same, α = 0, 0.1, 0.3, 0.5, 0.7 are used to apply DI analysis to
the propagation model. The result is shown in Fig. 7.
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Fig. 7. Impact of interventional force α on the propagation of public opinion. α takes 0,0.1,0.3,0.55,0.7: density changes of (a) S
state node, (b) C state node, (c) I state node, and (d) R state node.

It can be seen from Figs. 7(a) and 7(d), that the magni-
tude of the interventional force is reflected in the numbers of
nodes in the unknown state S and the immune state R at the
initial state of public-opinion propagation, where the magni-
tude of the interventional force, α , is inversely related to the
node density of the unknown state S, while positively corre-
lated with the node density of the immune state R. Thus, the
greater the interventional force α , the fewer S-state users and
more R-state users during the initial propagation. Simulta-
neously, the greater the intervention force α , the slower the
density of the S-state node density and the R-state node den-
sity are reduced, indicating that the interventional force α can
suppress the fluctuation of the number of nodes in different
states in the network and maintain network stability. As can

be seen from Fig. 7(b), the greater the interventional force α ,
the slower the growth rate of the hesitant state C in the pro-
cess of public-opinion propagation, which delays the time for
the hesitant state C node density to reach the peak. The time
required for the number of C-state nodes to reach the peak is
shortened from 61 hours with interventional force α = 0.7 to
22 hours without interventional force. This also reduces the
corresponding peak value and its proportion in the spread of
public opinion. It can be seen from Fig. 7(c) that the greater
the interventional force α , the slower the growth rate of the
propagation state I in the early stage of public-opinion propa-
gation. This indicates that increasing the interventional force
α can slow the outbreak of public opinion in the network. The
time is increased, and the number of corresponding peaks is
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reduced as well. In the steady state, the node density of the I

state when the interventional force α = 0.7 is lower than that

when the interventional force α = 0 by 65.97%. The above

conditions indicate that interventional force α can change the

proportion of the number of nodes in each state of the ini-

tial stage of public-opinion propagation, increasing the inter-

ventional force α can increase the number of users who are

immune in the initial stage of public-opinion propagation, and

reduce the time and scope of public-opinion propagation in the

network, which effectively suppresses the spread of malignant
public opinion.

4.4. The influence of real information credibility on the
propagation of public opinion

To analyze the influence of real information credibility
β on the spread of public opinion, based on the premise that
other variables are the same, β = 0, 0.1, 0.3, 0.5, 0.7 are used
to apply DI analysis to the propagation model. The result is
shown in Fig. 8.
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Fig. 8. Impact of real information credibility β on the propagation of public opinion β takes 0,0.1,0.3,0.5,0.7, respectively: density changes
of (a) S state node, (b) C state node, (c) I state node, and (d) R state node.

It can be seen from Fig. 8(b) that, with the increase of
real information credibility β , the peak of node density in
hesitant-state C decreases significantly. When the real infor-
mation credibility is β = 0.7, the node density in hesitant state
C decreases 49.23%, compared with β = 0, indicating that in-
creasing the credibility of real information β can reduce the
number of hesitant nodes in the network and further reduce
the spread of nodes to the propagation state I. Thus, the spread
of public opinion is suppressed. It can be seen from Fig. 8(c)
that, with the increase of the real information credibility β , the
peak of the node density in propagation state I decreases sig-
nificantly. When the real information credibility is β = 0.7,
the node density in the propagation state I decreases 38.74%
compared with β = 0, indicating that increasing the real infor-
mation credibility β can reduce the node density of the propa-

gation state I, and inhibit the further spread of public opinion.

As can be seen from Fig. 8(d), increasing the credibility of

real information β increases the growth rate of the density of

R state nodes. Simultaneously, the number of immune-state

nodes also increases in the stable state, indicating that increas-

ing the credibility of real information β can reduce the spread

of public opinion. All of the above shows that real information

credibility β can significantly affect the spread of public opin-

ion on social networks. The larger real information credibility

β is, the less people trend to believe public opinion. So rel-

evant departments can affect the spread of public opinion by

adjusting real information credibility β to avoid the spread of

negative public opinion.
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4.5. The influence of interventional time on the propaga-
tion of public opinion

To analyze the influence of interventional time T on the
spread of public opinion, assuming that other variables are the
same, we consider the time, T = 3, 10, 20, 30, 40, to apply
DI analysis to the propagation model. The result is shown in
Fig. 9.

It can be observed from Fig. 9(b) that, before direct im-
munity is applied, the node density of the hesitant state C will
reach its peak 9 h after the start of propagation. When di-
rect immunity is applied at T = 3, the propagation of hesitant
state C will be blocked, so that the peak corresponding to the
hesitant C in the state of the interventional time, T = 3, is
much smaller than the peak value when no direct immuniza-
tion is applied. This effectively reduces the number of hesita-
tion states C to the propagation state I, and inhibits the spread
of public opinion. It can be seen from Fig. 9(c) that, when di-
rect immunization is involved at T = 3, the peak value of the
node density of the propagation state I is reduced by 45.82%

compared with other states, which effectively suppresses the
spread of public opinion. When direct immunization is in-
volved at T = 10, the corresponding node density of the propa-
gation state I is just at the peak of the theoretical condition that
no direct immunity is applied. At this time, when direct im-
munity is applied, the node density of the propagation state I
suddenly decreases, inhibiting the large-scale spread of public
opinion. When the interventional time T = 20, 30, 40, it also
inhibits the spread of public opinion. However, the intensity
of the effect decreases in turn. As can be seen from Fig. 9(d),
the earlier the interventional time, the earlier the node density
of the immune state R enters a stable state and the shorter the
propagation time of public opinion, the worse the propagation
effect. The above results indicate that the earlier the interven-
tional time, the shorter the time and scope of public opinion
spread on the network. This means that relevant departments
can suppress the spread of negative public opinion by taking
timely and effective measures, thereby reducing the impact of
negative public opinion.
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Fig. 9. Impact of interventional time T on the propagation of public opinion. T takes 3, 10, 20, 30, 40, respectively: density
changes (a) of S state node, (b) C state node, (c) I state node, and (d) R state node.

4.6. Comparative analysis of different models

To analyze the different effects of the DI-SCIR model,
it is compared with SIR and SCIR. The results are shown in
Fig. 10.

It can be seen from Figs. 10(a) and 10(d) that, owing to
the availability of interventional force, the node density of the
unknown state S, and the immune state R, is not 0 at the begin-

ning, and a proportion of immunized users in the initial stage

of propagation exists. This prompts the unknown state S, and

the immune state R, to enter a stable state sooner, reducing the

time for public opinion to spread in the network. It can be seen

from Fig. 10(b) that the existence of the hesitant state C is not

considered in the SIR model. The model in this paper signifi-

cantly reduces the peak of the node density of the hesitant state
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C, thereby effectively reducing the number of hesitant-state
nodes transferred to the propagation state I. This suppresses
the spread of public opinion. It can be seen from Fig. 10(c)
that the peak value of propagation state I is the largest in the
SIR model, followed by the SCIR model, in which the peak
value drops by 25.74%. The smallest is obtained in the DI-

SCIR model, whose peak value drops by 59.12%. Meanwhile,
the time required for the propagation state I to reach the peak
also decreases in turn, indicating that the DI-SCIR model can
significantly reduce the number of propagators and the prop-
agation time in the network. This effectively suppresses the
spread of public opinion in the network.
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Fig. 10. Impact of different models on the spread of public opinion. The models are SIR, SCIR, and the DI-SCIR public-opinion propagation
models based on real-time online users: (a) density changes of(a) of S state node, (b) C state node, (c) I state node, and (d) R state node.

5. Conclusions

Extant public-opinion propagation models do not con-
sider the fluctuation of the number of network users and the
influence of social factors on the effect of public-opinion im-
munity. Thus, it is difficult to accurately describe the rules
of public-opinion propagation in social networks. This arti-
cle comprehensively considered the activity of social-network
users and the regulatory role of relevant government depart-
ments in the control of propagation of public opinion. As a
result, the DI-SCIR public-opinion propagation model based
on real-time online users is presented. The model analyzes
the rules of social-network public-opinion spread. Theoretical
and simulation verification showed that the model can more
accurately reflect the spread of public opinion. When the ba-
sic reproduction number R0 > 1, the public opinion continues
to spread in the network, similar to the spread of epidemics.
When R0 6 1, the public opinion automatically disappears af-
ter a period of time in the network, similar to the spread of

endemic diseases. Social factors can effectively control the
spread of public opinion to increase the interventional force
α , and the credibility of real information, β , can increase the
number of R-state users who are immune at the initial mo-
ment with a probability of direct immunization PSR, thereby
inhibiting the spread of network public opinion. The smaller
the interventional time T , the sooner the spread of the public
opinion can be controlled. The results of this article provide a
good reference for the relevant departments to develop a con-
trol capability for the spread of public opinion so that they can
actively resolve crises of malignant public sentiment, which
is of great importance when maintaining social security and
stability.

As a limitation, this article did not consider the upper lim-
its of the increase in the amount of online public-opinion in-
formation when establishing social-network users’ additional
and offline rates. In future research, we plan to draw on the
logistics population growth model to formulate the additional
and offline rates to establish a more accurate model. At the
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same time, the model designed in this paper defines each state
transition probability as a constant, without considering the
influence of factors such as network structure (e.g., node de-
gree) and user interest (e.g., social reinforcement effect) on
the spread of public opinion, these can be future research di-
rections to improve the DI-SCIR public-opinion propagation
model.
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